Statistica descrittiva: misure di dispersione (o variabilità).

Le misure di variabilità sono utilizzate per descrivere il grado di variabilità delle osservazioni rispetto ad un indice di tendenza centrale.

Le tecniche per misurare la variabilità di insiemi di dati sono numerose.
Tra queste, le più note (e più utilizzate) sono:

Visualizzeremo graficamente i concetti acquisiti di tendenza centrale e dispersione ritornando a parlare di asimmetria e introducendo il concetto di curtosi.

Leggi tutto “Statistica descrittiva: misure di dispersione (o variabilità).”

Statistica descrittiva: misure di posizione

Una misura di posizione è un valore calcolato per un gruppo di dati e utilizzato per descrivere in qualche modo i dati.

Cosa vedremo nel post

Leggi tutto “Statistica descrittiva: misure di posizione”

La distribuzione di Poisson

La distribuzione di Poisson è utile per misurare quanti eventi possono accadere durante un dato orizzonte temporale, come ad esempio il numero dei clienti che entrano in un negozio durante la prossima ora, oppure il numero di pageviews su di un sito web nel prossimo minuto, e via dicendo…

Leggi tutto “La distribuzione di Poisson”

La distribuzione geometrica

Dopo aver visto in un precedente post la più famosa distribuzione discreta, la Binomiale, è giunto il momento di gettare uno sguardo alla distribuzione geometrica.

Si usa quando si fanno tentativi indipendenti, ciascuno dei quali può avere come esito il successo o il fallimento, e si è interessati a conoscere quanti tentativi occorrono per avere un primo risultato positivo.

In simboli:

\( X \sim Geo(p) \\ \\ \) Leggi tutto “La distribuzione geometrica”

Distribuzioni di probabilità: distribuzioni discrete – La Binomiale

 

Una variabile casuale (o variabile aleatoria, o stocastica) è una variabile che può assumere valori diversi in dipendenza da qualche fenomeno aleatorio. In molti libri di statistica è indicata semplicemente come v.c.
E’ un valore numerico.

Quando valori di probabilità sono assegnati a tutti i possibili valori numerici di una variabile casuale x, il risultato è una distribuzione di probabilità.

In termini ancora più semplici: una variabile casuale è una variabile i cui valori sono associati a una probabilità di essere osservati. L’insieme di tutti i possibili valori di una variabile casuale e le probabilità ad essi associati è chiamato distribuzione di probabilità. La somma di tutte le probabilità è 1.

Leggi tutto “Distribuzioni di probabilità: distribuzioni discrete – La Binomiale”